IFT 6113 SHAPE REPRESENTATIONS

http://tiny.cc/6113

Mikhail Bessmeltsev

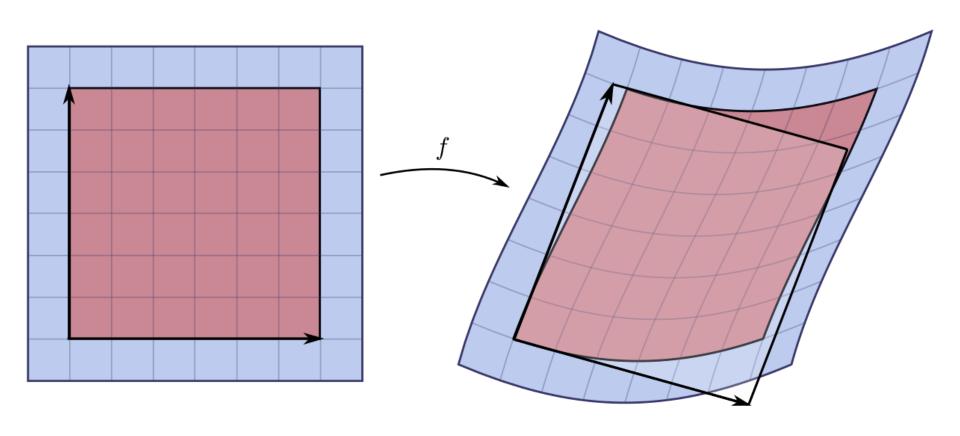
OUR FOCUS



Embedded geometry

What is an embedded surface?

PARAMETRIC SURFACE



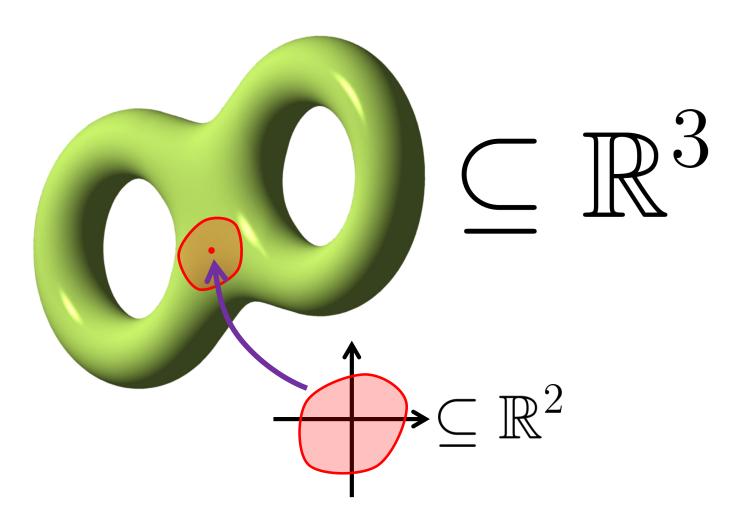
NEXT ISSUE

 $f: \mathbb{R}^2 \to \mathbb{R}^3 \dots$?

A surface is a set of points with certain properties.

It is not a function.

THEORETICAL DEFINITION OF SURFACE



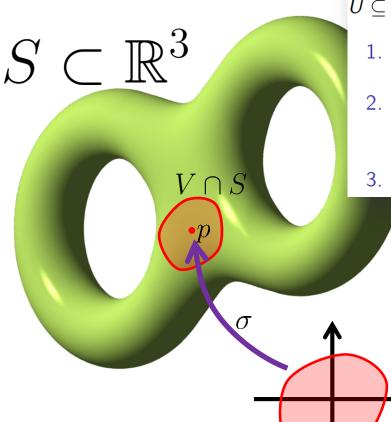
THEORETICAL DEFINITION OF SURFACE

A a set $S \subset \mathbb{R}^3$ is a *regular surface* if for each $p \in S$ there exists an open neighbourhood $V \subseteq \mathbb{R}^3$ containing p, an open neighbourhood $U \subseteq \mathbb{R}^2$ and a parametrization $\sigma: U \to V \cap S$ such that:

1.
$$\sigma = (\sigma^1, \sigma^2, \sigma^3)$$
.

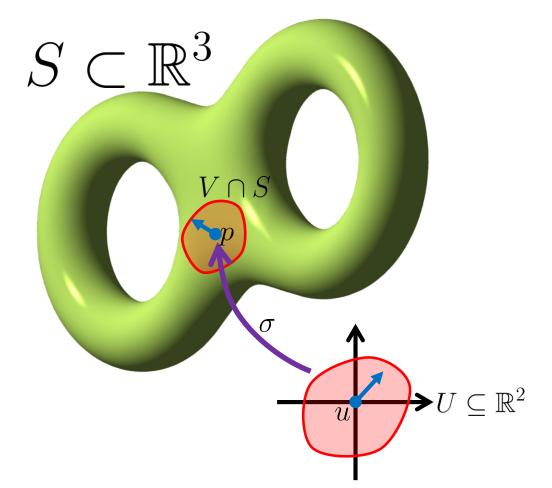
- 2. σ is invertible as a map from U onto $V \cap S$ and has a continuous inverse.
- 3. $D\sigma_q$ is injective $\forall q$. (If and only if $\det((D\sigma_q)^\top D\sigma_q) \neq 0$.)

Text from Stanford CS 468 lecture 5 (2013), A. Butscher



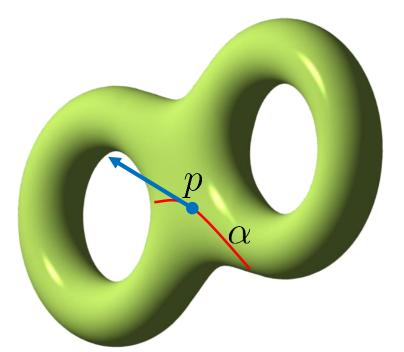
TANGENT SPACE

 $T_p S := \operatorname{Image}(D\sigma_u)$

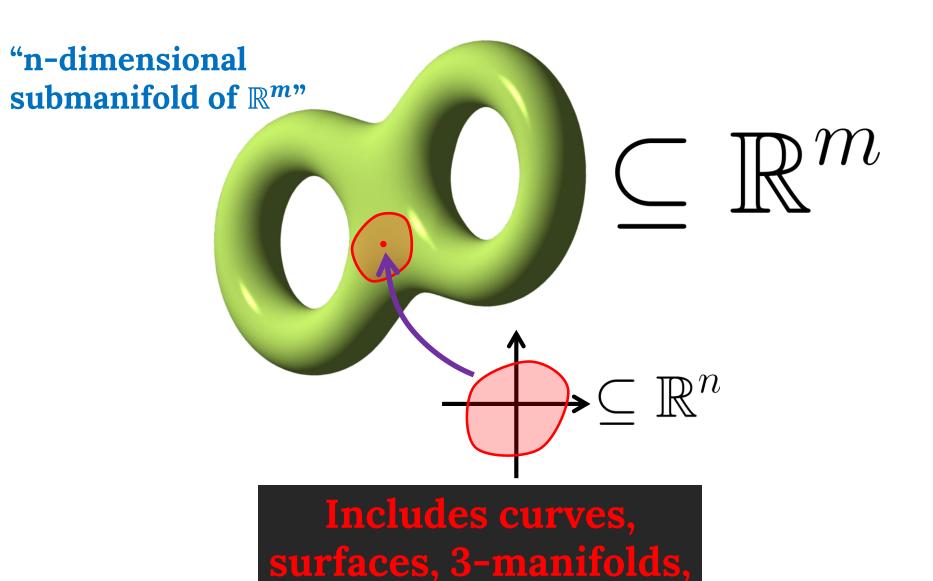


TANGENT SPACE: COORDINATE-FREE

$$v \in T_p S \iff$$
there exists curve $\alpha : (-\varepsilon, \varepsilon) \to S$
with $\alpha(0) = p, \alpha'(0) = v$

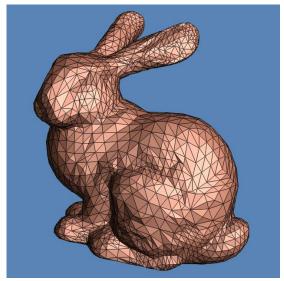


N-D EMBEDDED MANIFOLD



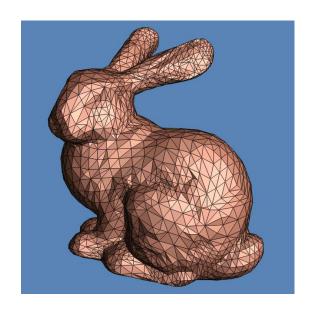
DISCRETE PROBLEM

What is a discrete surface? How do you store it?



Boundary

Volume



https://mathgrrl.com/hacktastic/2015/10/low-voxel-stanford-bunny-voxelizationminecraft-tutorial/

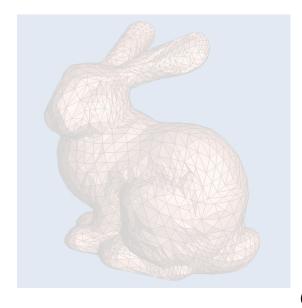
Boundary

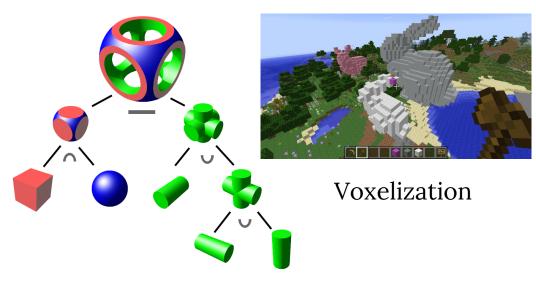
Volume

https://mathgrrl.com/hacktastic/2015/10/low-voxel-stanford-bunny-voxelizationminecraft-tutorial/

Boundary

Volume





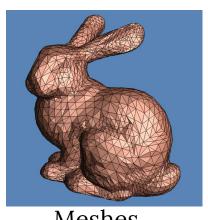
Constructive Solid Geometry

Boundary

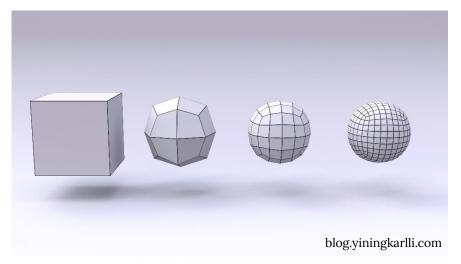
Volume

https://mathgrrl.com/hacktastic/2015/10/low-voxel-stanford-bunny-voxelizationminecraft-tutorial/

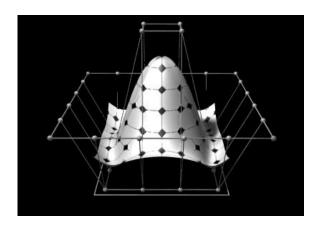
BOUNDARY SHAPE REPRESENTATIONS



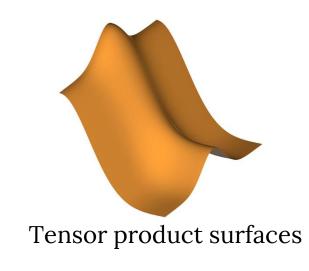
Meshes



Subdivision surfaces



NURBS



DIFFERENTIAL GEOMETER'S **MANTRA**

A surface is locally planar.

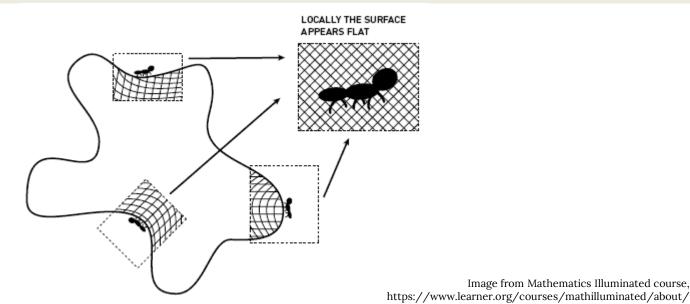
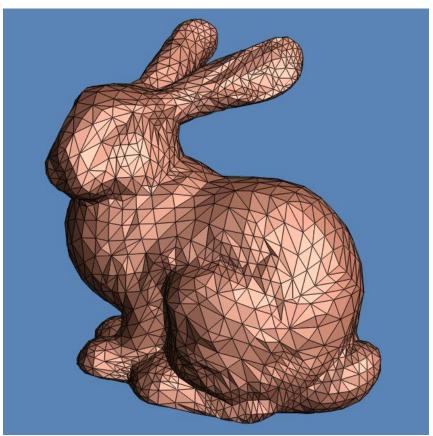


Image from Mathematics Illuminated course,

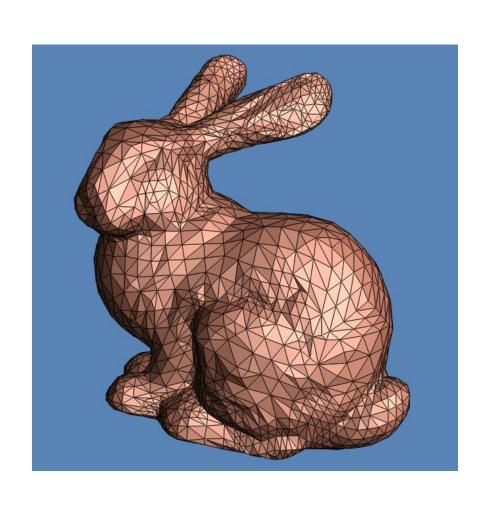
COMMON REPRESENTATION



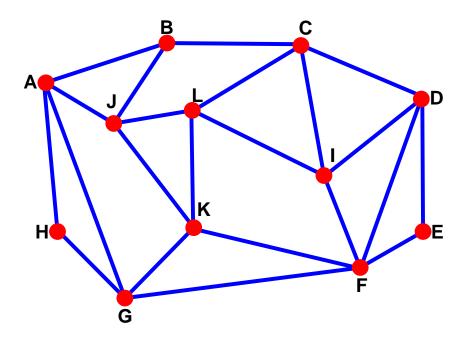
http://graphics.stanford.edu/data/3Dscanrep/stanford-bunny-cebal-ssh.jpg http://www.stat.washington.edu/wxs/images/BUNMID.gif

Triangle mesh

MESH = EMBEDDED GRAPH?

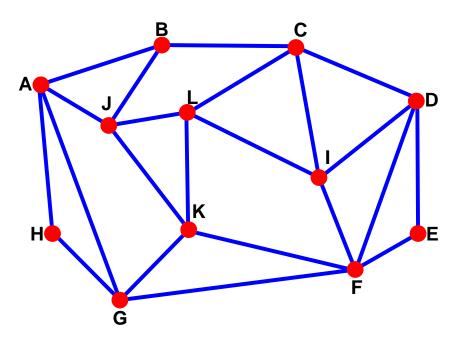


GRAPH



$$E = edges = \{(A,B),(B,C),(C,D),...,(L,I)\}$$

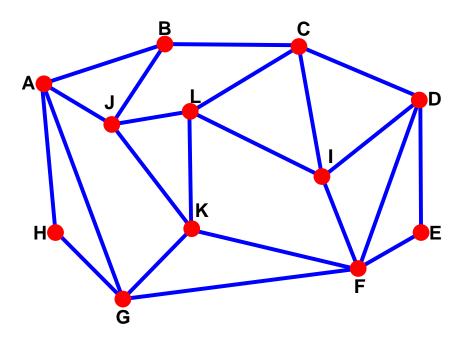
GRAPH



Face: cycle of vertices/edges which cannot be shortened

$$\mathbf{F} = \text{faces} = \{(A,H,G),(A,J,K,G),(B,A,J),(B,C,L,J),(C,I,L),(C,D,I), (D,E,F),(D,I,F),(L,I,F,K),(L,J,K),(K,F,G)\}$$

GRAPH

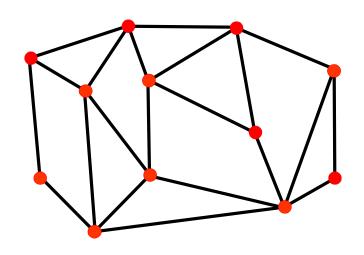


Vertex degree (valence) = number of edges adjacent to vertex

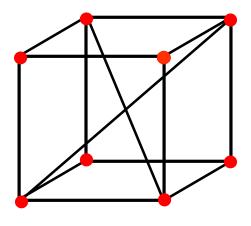
$$\deg(J) = 4, \deg(H) = 2$$

GRAPH EMBEDDING

Graph is embedded in \mathbb{R}^d if each vertex is assigned a position in \mathbb{R}^d .



Embedding in R²



Embedding in R³

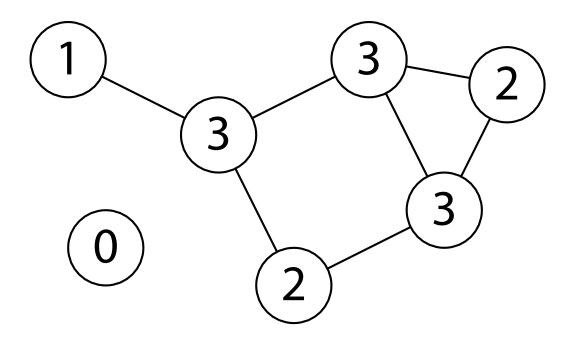
TRIANGLE MESH

A graph, embedded in 3D,

such that each face is a triangle?

CONNECTED GRAPH

⇔ there is a path of edges connecting every two vertices



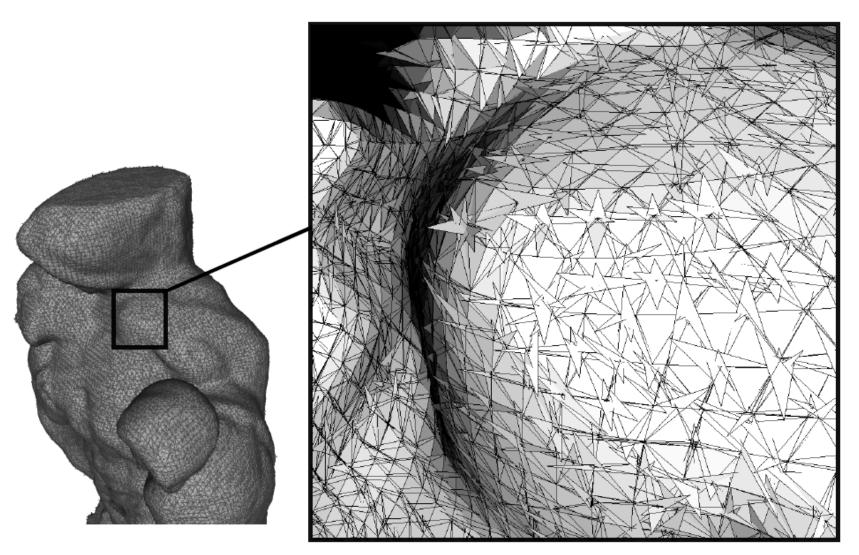
A SIMPLER APPROACH?

$$M = (V, T)$$

What conditions are needed?

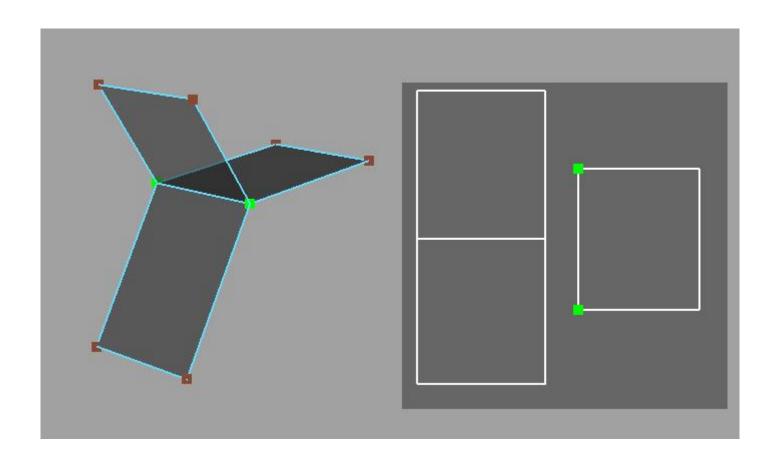
Triangle mesh

IS THIS A SURFACE?



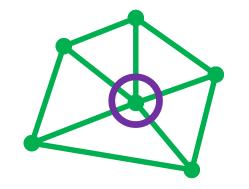
http://igl.ethz.ch/projects/parameterization/rangemap-param/rangemap-param.pdf

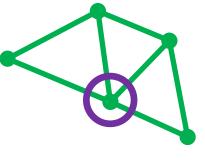
NONMANIFOLD EDGE



MANIFOLD MESH

- 1. Each edge is incident to one or two faces
- 2. Faces incident to a vertex form a closed or open fan



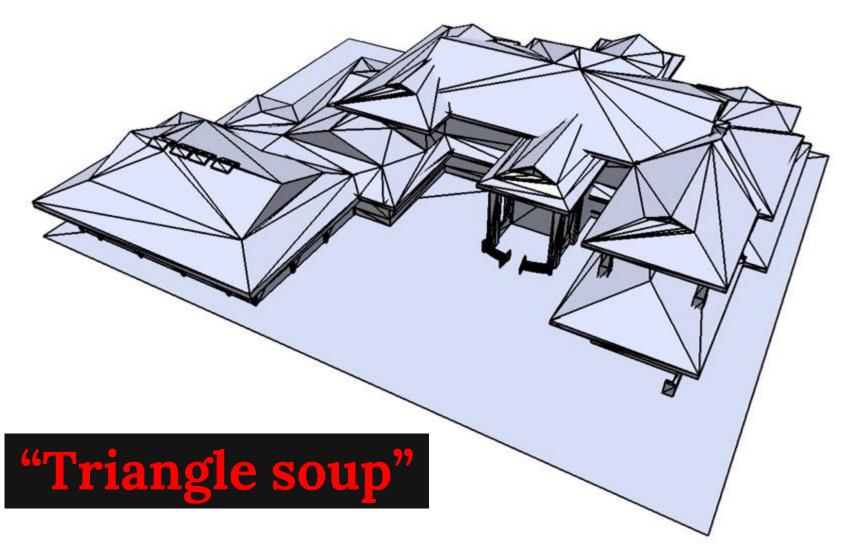


MANIFOLD MESH

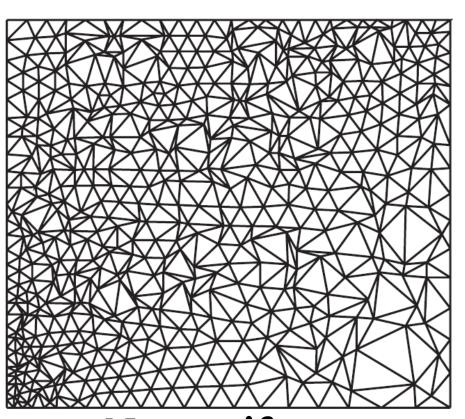
- 1. Each edge is incident to one or two faces
- 2. Faces incident to a vertex form a closed or open fan

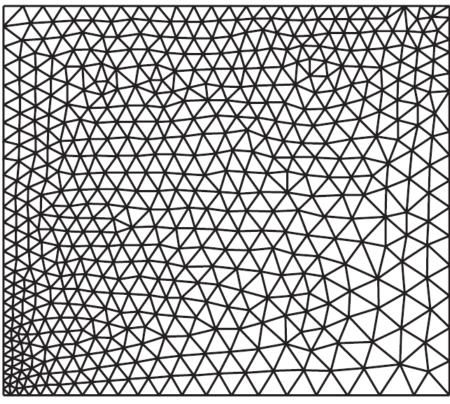
Assume meshes are manifold (for now)

EASY-TO-VIOLATE ASSUMPTION



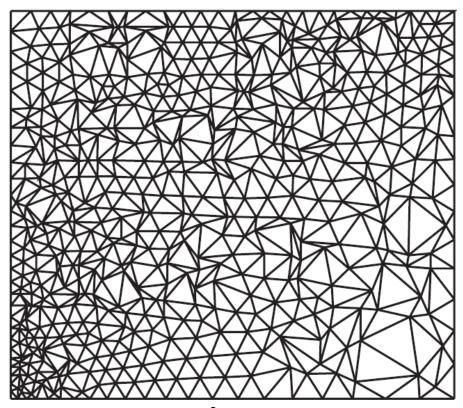
INVALID MESHES VS. BAD MESHES





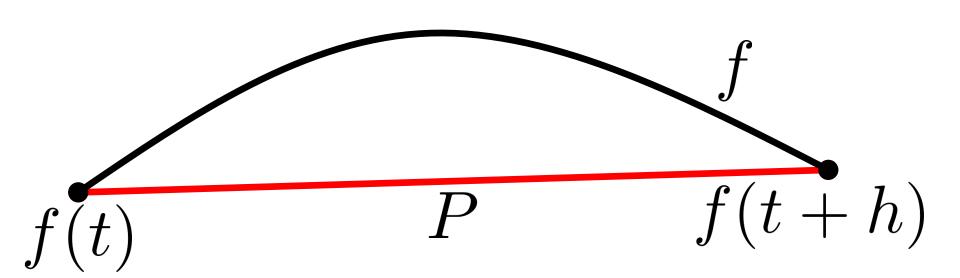
Nonuniform areas and angles

WHY IS MESHING AN ISSUE?

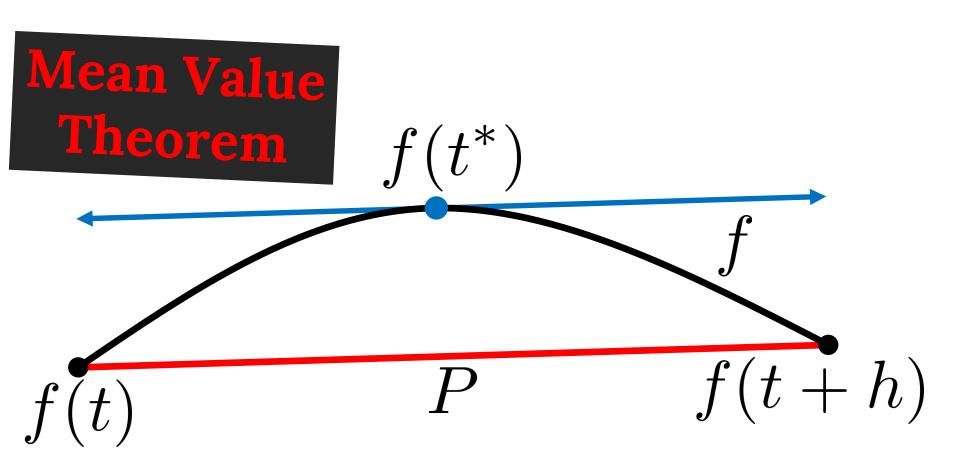


How to interpret one value per vertex?

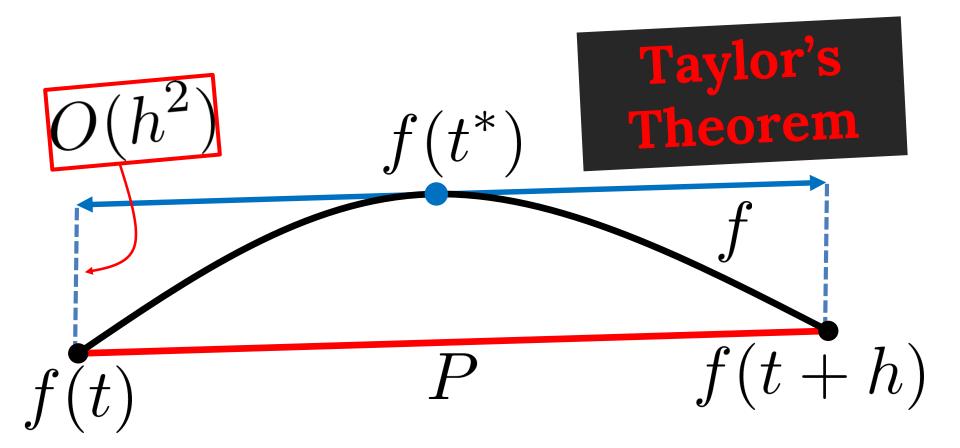
APPROXIMATION PROPERTIES



APPROXIMATION PROPERTIES



APPROXIMATION PROPERTIES



CONCLUSION

Piecewise linear faces are reasonable building blocks.

ADDITIONAL ADVANTAGES

Simple to render

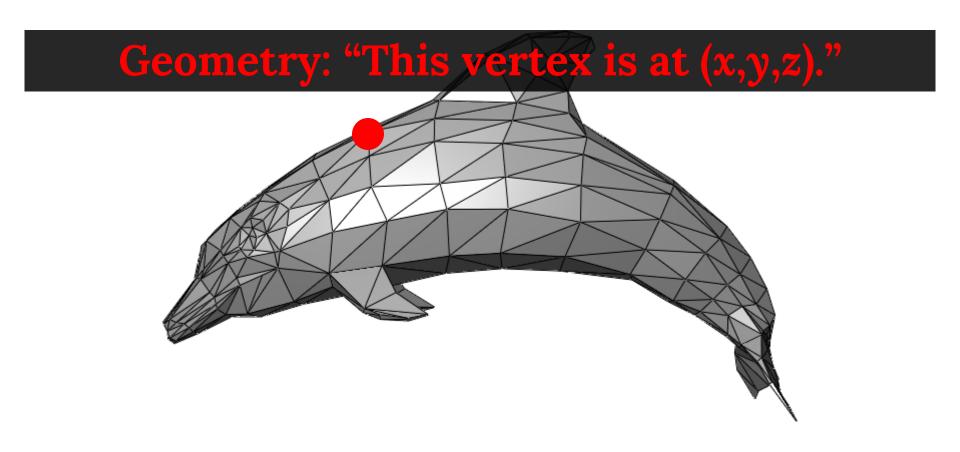
Arbitrary topology possible

• Basis for subdivision, refinement

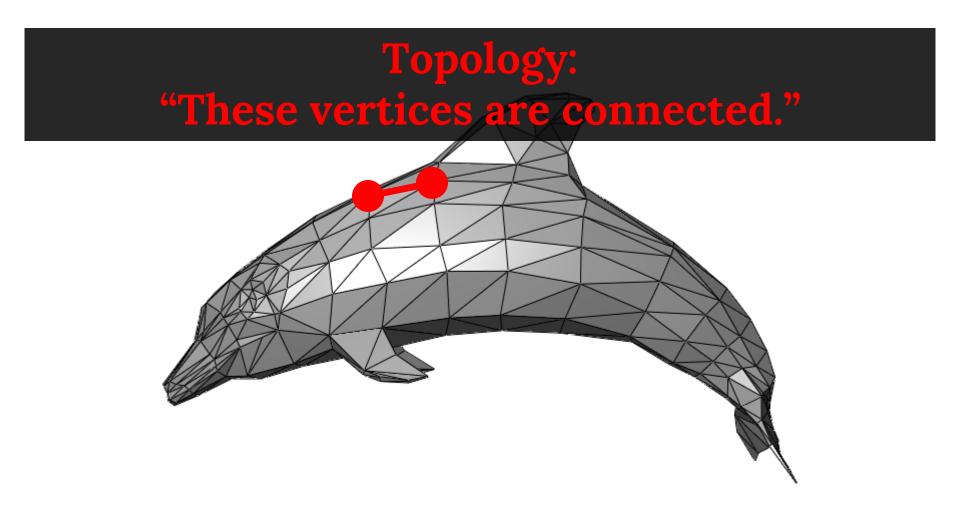
Topology

The study of geometric properties that remain invariant under certain transformations

MESH TOPOLOGY VS. GEOMETRY



MESH TOPOLOGY VS. GEOMETRY



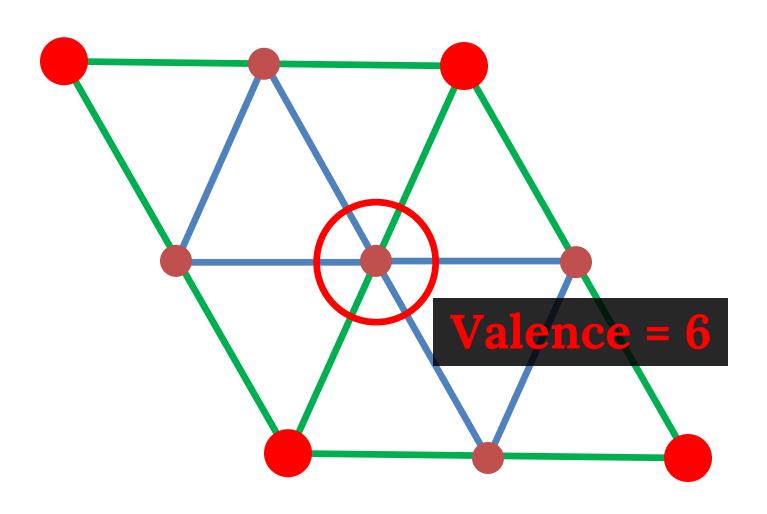
TRIANGLE MESH

$$V = (v_1, v_2, \dots, v_n) \subset \mathbb{R}^n$$

$$E = (e_1, e_2, \dots, e_k) \subseteq V \times V$$

$$F = (f_1, f_2, \dots, f_m) \subseteq V \times V \times V$$

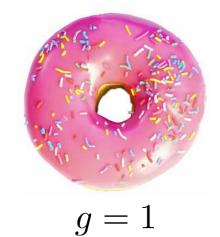
VALENCE

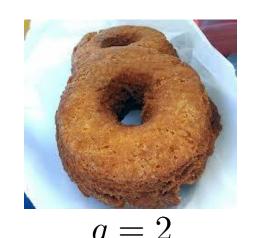


EULER CHARACTERISTIC

$$V-E+F:=\chi$$

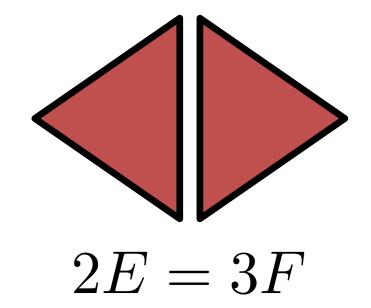
$$\chi=2-2g$$
 Defer proof





$$V - E + F := \chi$$

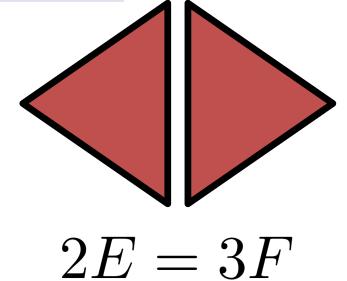
"Each edge is adjacent to two faces. Each face has three edges."



Closed mesh: Easy estimates!

$$V - \frac{1}{2}F := \chi$$

"Each edge is adjacent to two faces. Each face has three edges."



Closed mesh: Easy estimates!

 $V - \frac{1}{2}F := \chi$ $F \approx 2V$

Closed mesh: Easy estimates!

 $E \approx 3V$

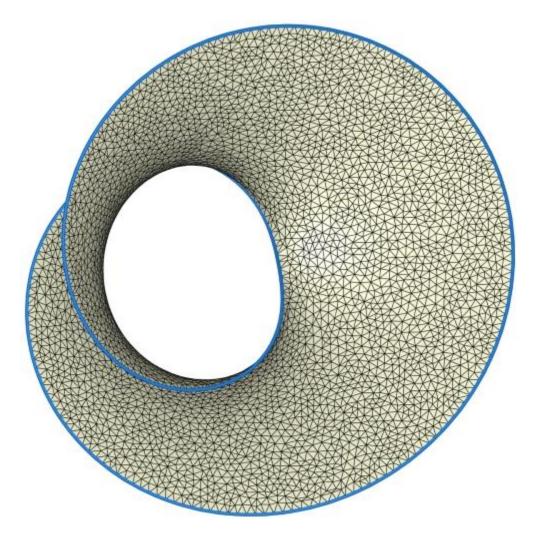
 $F \approx 2V$

average valence ≈ 6

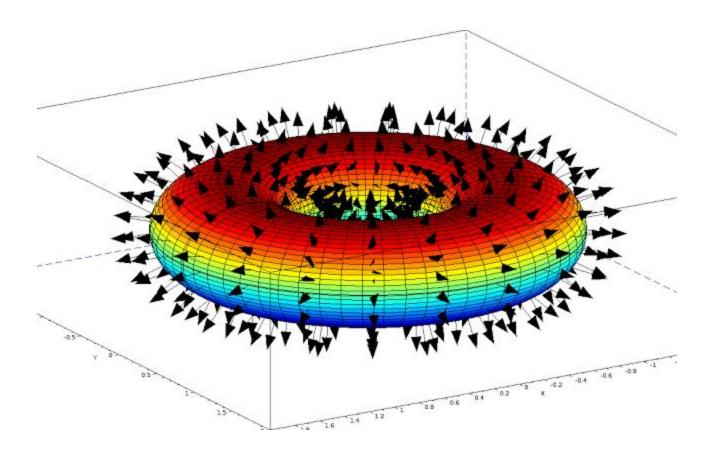
Why?!

General estimates

ORIENTABILITY



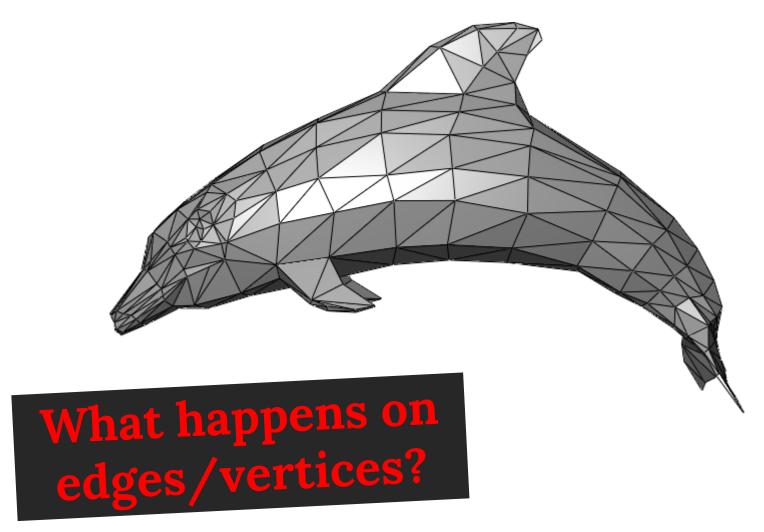
SMOOTH SURFACE DEFINITION



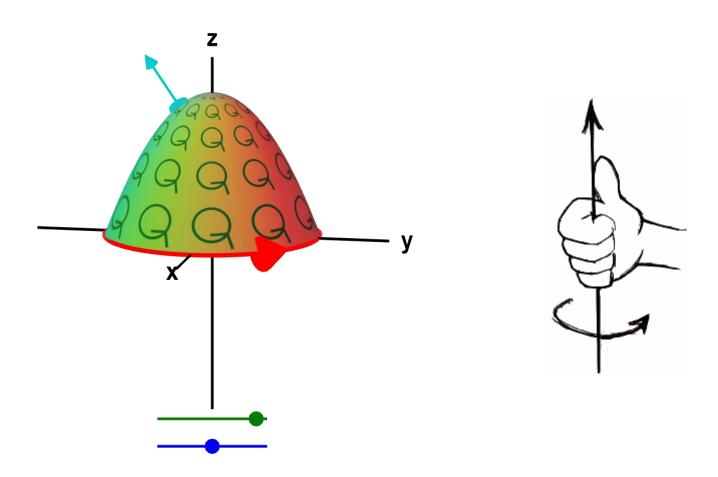
https://lh3.googleusercontent.com/-njXPH7NSX5c/VV4PXu54n9I/AAAAAAAJjM/m6TGg3ZVKGE/w640-h400-p-

Continuous field of normal vectors

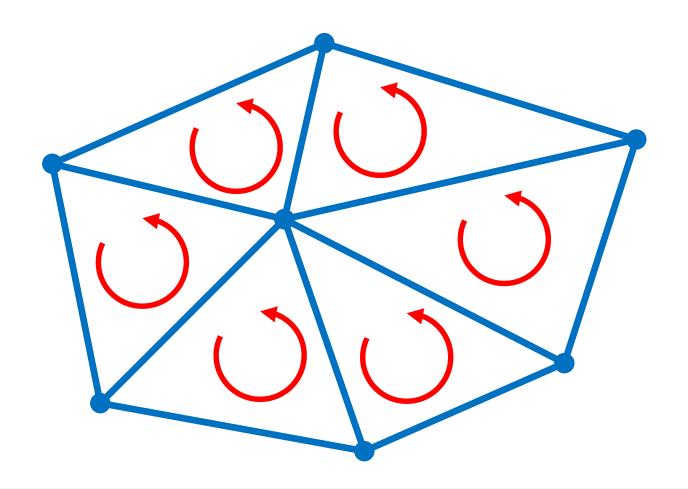
ISSUE ON TRIANGLE MESH



RIGHT-HAND RULE



DISCRETE ORIENTABILITY



Normal field isn't continuous

DATA STRUCTURES FOR SURFACES

Must represent geometry and topology.

SIMPLEST FORMAT

```
      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3
```

No topology!

CS 468 2011 (M. Ben-Chen), other slides

Triangle soup

SIMPLEST FORMAT

```
      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3

      x1
      y1
      z1
      /
      x2
      y2
      z2
      /
      x3
      y3
      z3
```

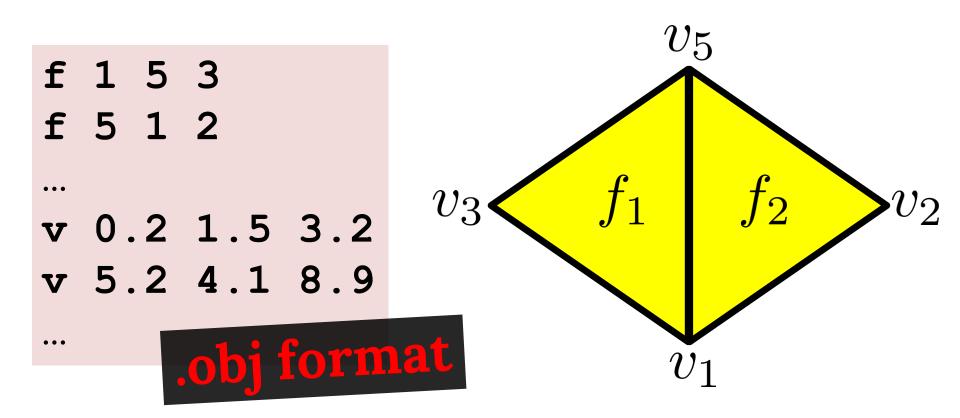
No topology!

glBegin(GL_TRIANGLES)

CS 468 2011 (M. Ben-Chen), other slides

Triangle soup

FACTOR OUT VERTICES



CS 468 2011 (M. Ben-Chen), other slides

Shared vertex structure

SIMPLE MESH SMOOTHING

```
for i=1 to n
  for each vertex v
  v = .5*v +
    .5*(average of neighbors);
```

TYPICAL QUERIES

- Neighboring vertices to a vertex
- Neighboring faces to an edge
- Edges adjacent to a face
- Edges adjacent to a vertex

•

Mostly localized

TYPICAL QUERIES

- Neighboring vertices to a vertex
- Neighboring faces to an edge
- Edges adjacent to a face
- Edges adjacent to a vertex

•

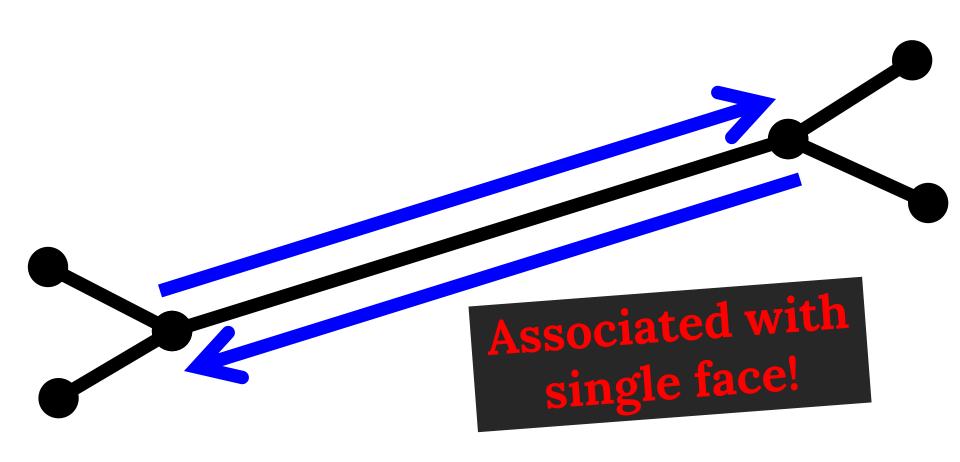
Mostly localized

PIECES OF HALFEDGE DATA STRUCTURE

- Vertices
- Faces
- ·Half-edges

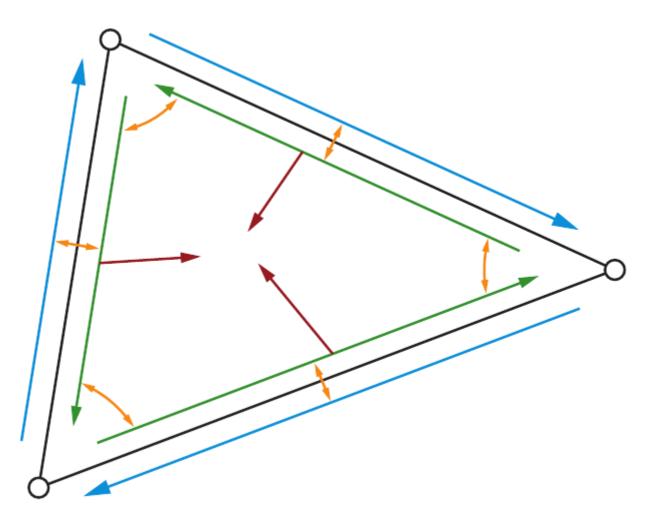
Structure tuned for meshes

HALFEDGE?



Oriented edge

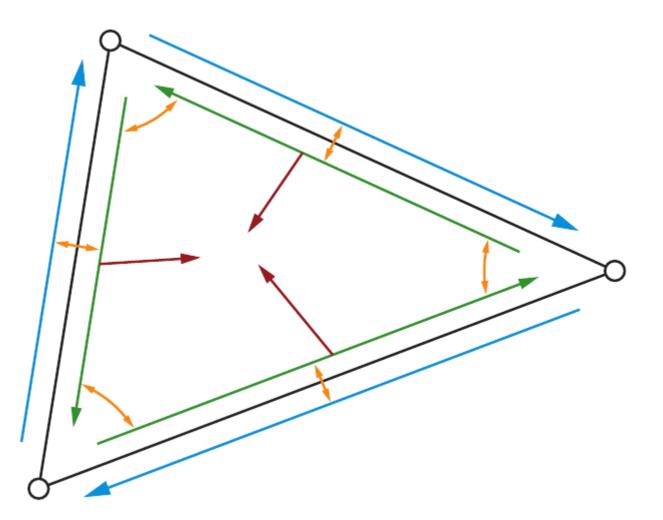
HALFEDGE DATA TYPES



Vertex stores:

Arbitrary outgoing halfedge

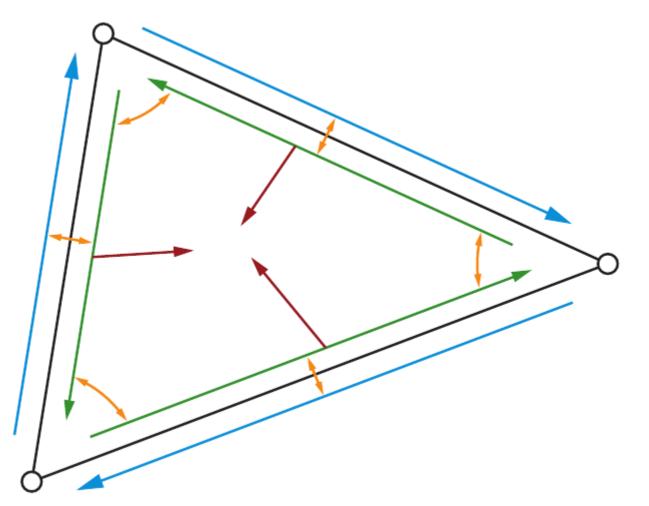
HALFEDGE DATA TYPES



Face stores:

Arbitrary adjacent halfedge

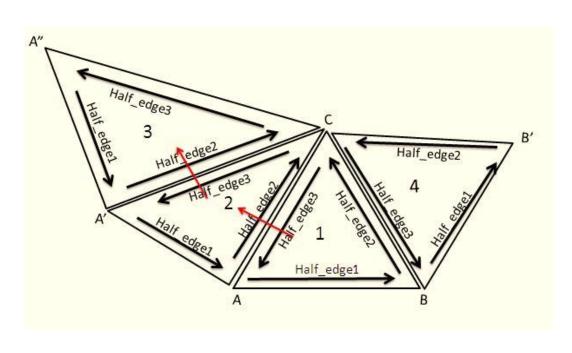
HALFEDGE DATA TYPES



Halfedge stores:

- Flip
- Next
- Face
- Vertex

ITERATING OVER VERTEX NEIGHBORS



```
Iterate(v):
startEdge = v.out;
e = startEdge;
do
    process(e.flip.from)
    e = e.flip.next
while e != startEdge
```

ONLY SCRATCHING THE SURFACE

Eurographics Symposium on Geometry Processing (2005) M. Desbrun, H. Pottmann (Editors)

Streaming Compression of Triangle Meshes

Martin Isenburg^{1†}

Peter Lindstrom²

Jack Snoeyink¹

¹ University of North Carolina at Chapel Hill

² Lawrence Livermore National Labs

EUROGRAPHICS 2011 / M. Chen and O. Deussen (Guest Editors)

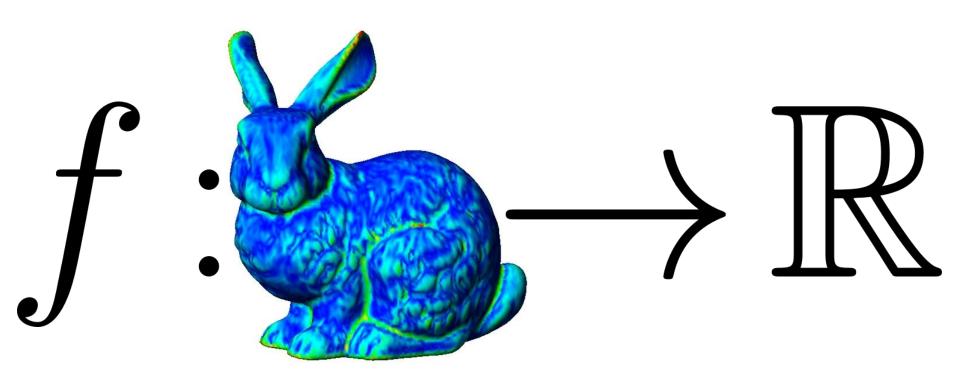
Volume 30 (2011), Number 2

SQuad: Compact Representation for Triangle Meshes

Topraj Gurung¹, Daniel Laney², Peter Lindstrom², Jarek Rossignac¹

¹Georgia Institute of Technology ²Lawrence Livermore National Laboratory

SCALAR FUNCTIONS



http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map points to real numbers

DISCRETE SCALAR FUNCTIONS

$$f \in \mathbb{R}^{|V|}$$

http://www.ieeta.pt/polymeco/Screenshots/PolyMeCo_OneView.jpg

Map vertices to real numbers

QUESTION

What is the integral of f?

$$\int_{M} f \, dA$$

FINITE ELEMENTS APPROACH

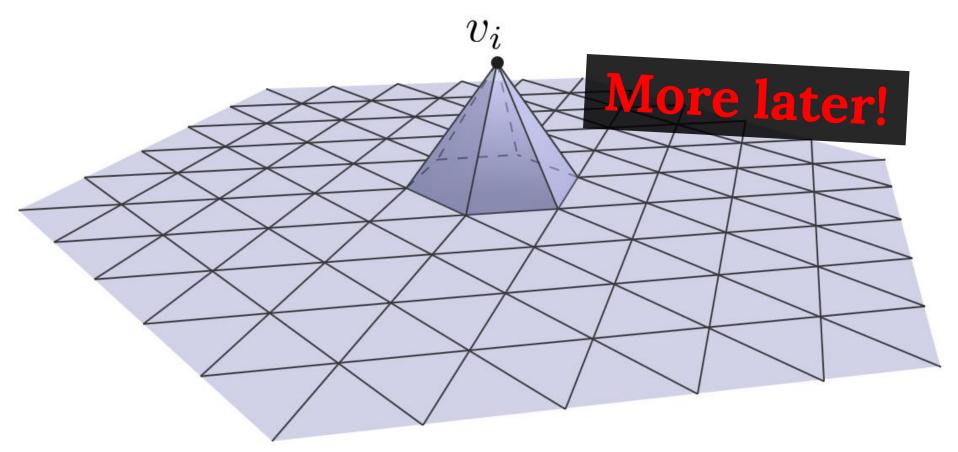
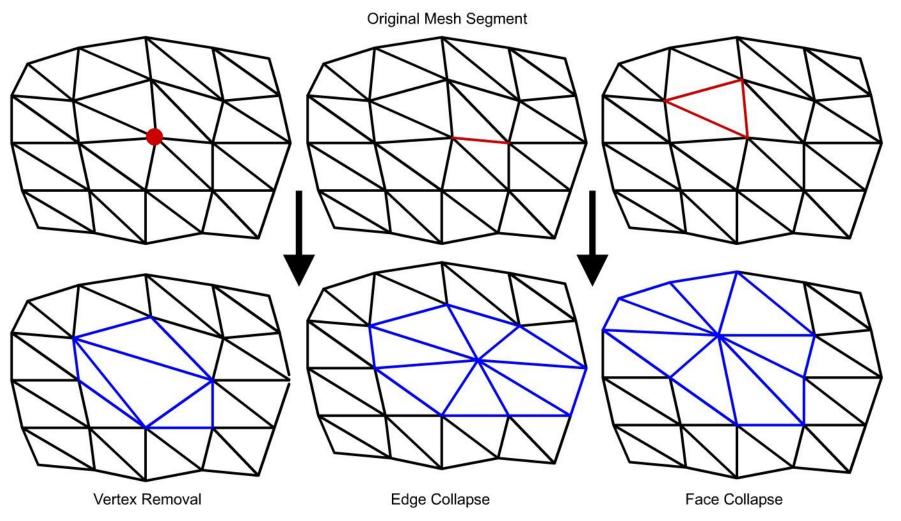


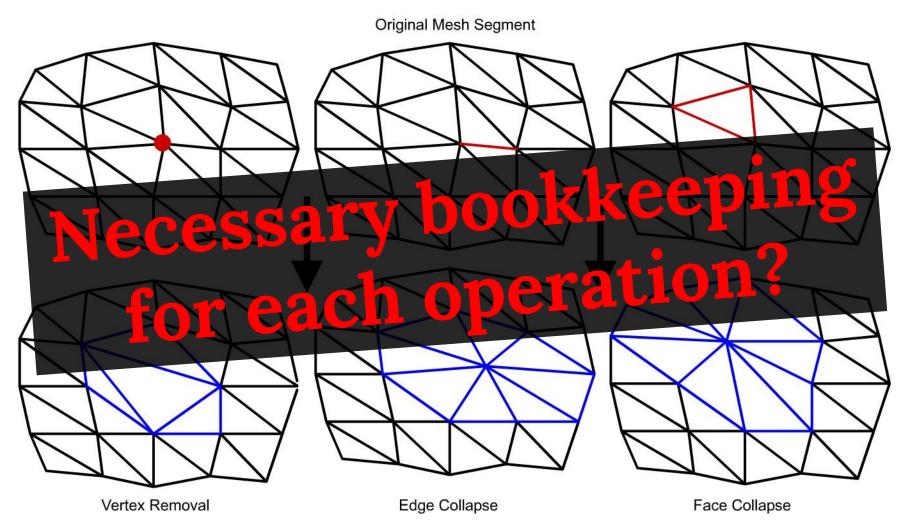
Image courtesy K. Crane

Use hat functions to interpolate

TOPOLOGICAL OPERATIONS



TOPOLOGICAL OPERATIONS



TAKE-AWAY

Simple Data
Structures

Structures

- Less memory
- Less efficient operations

- More memory
- More efficient operations

NOT THE ONLY MODEL

AN IMPLICIT SURFACE TENSION MODEL

J. I. Hochstein* and T. L. Williams**
The University of Memphis
Memphis, Tennessee

ABSTRACT

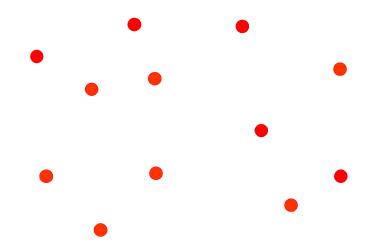
A new implicit model for surface tension at a two-fluid interface is proposed for use in computational models of flows with free surfaces and its performance is compared to an existing explicit model. The new model is based on an evolution equation for surface curvature that includes the influence of advection as nell or our face tension. A detailed development of the new model is presented as are the details of the computational implementation. The performance of the new model is compared to an existing explicit model by using both models to predict the surface dynamics of several twodimensional configurations. It is concluded that the new implicit surface tension model does perform better for configurations with a large surface tension coefficient. It is shown that, for several cases, the time step size is no longer limited by surface tension stability considerations (as it was using the explicit model), but rather by other limitations inherent in the existing volume advection algorithm.

INTRODUCTION

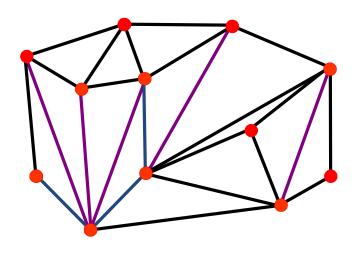
Incompressible flows with a free-surface exist in many industrial applications. Some examples include fuel atomization in internal combustion engines, droplet size control in ink-jet printers, formation of lead shot, control of liquid spacecraft propellant in low gravity, and the spinning of synthetic fibers. The technology for some of these applications has been developed by heavily relying on experimental study of the specific process involved. For others, such as spacecraft propellant management, experimental studies are prohibitively expensive and the ability to computationally model these process is essential for their development.

The modeling of flows with a free surface presents challenges unlike other types of flow problems in that a boundary condition must be applied at the free surface which is often in a transient state and irregularly shaped. This problem is exacerbated when the force due to surface tension

HOW TO GENERATE MESHES?

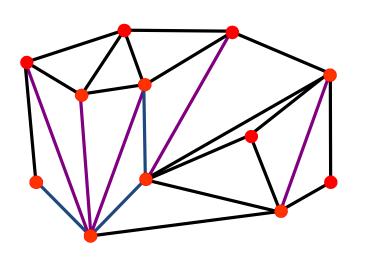


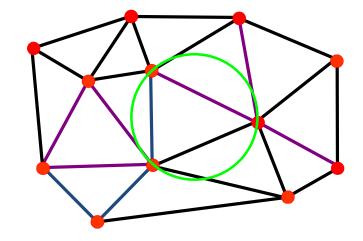
TRIANGULATION



Triangulation: triangle mesh on a set of points

TRIANGULATION





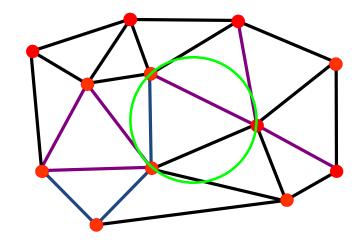
Triangulation: triangle mesh on a set of points

Delaunay triangulation (DT):

a triangulation s.t. the circumcircle of any triangle does not contain any other point.

FUN FACTS ABOUT DT



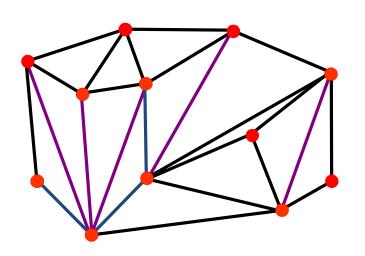


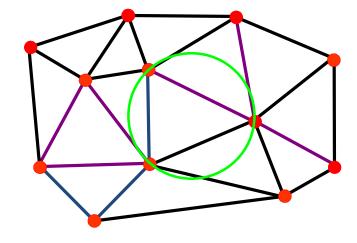
Theorem.

The exterior polygon of the DT is the convex hull.

DT is **the best triangulation** you can get in 2D.

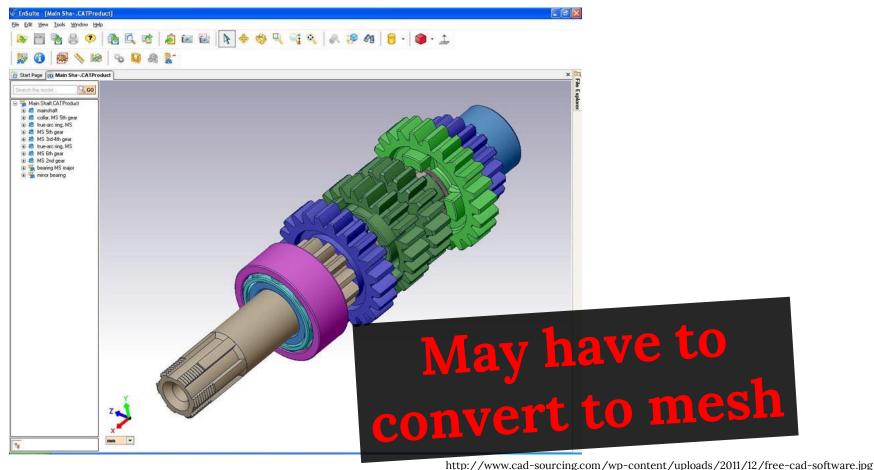
THE BEST HOW?





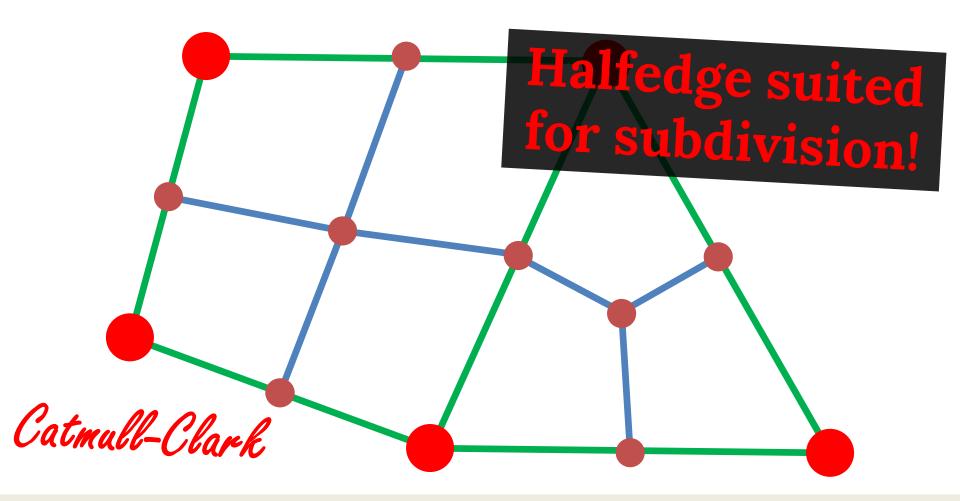
Take all angles, sort = Sequence of numbers (9°, 11°, 12°, 15°, ...)

DT's sequence is the last lexicographically

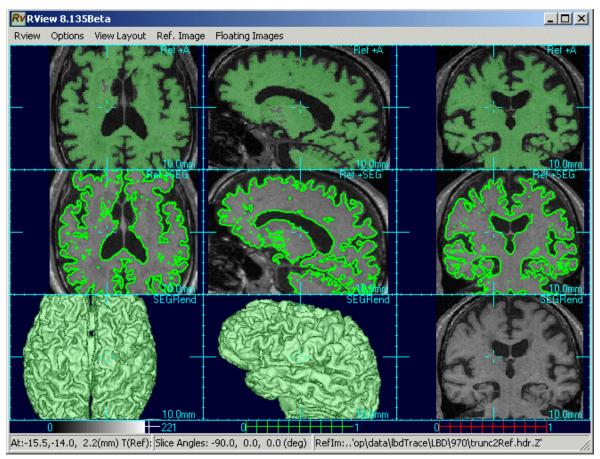


nttp.//www.cau-sourcing.com/wp-content/uploaus/2011/12/11ee-cau-software.jpg

Cleanest: Design software

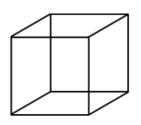


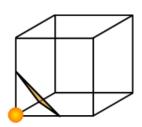
Cleanest: Design software

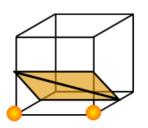


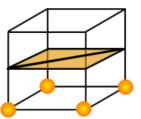
http://www.colin-studholme.net/software/rview/rvmanual/morphtool5.gif

Volumetric extraction

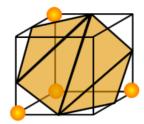


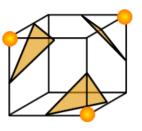


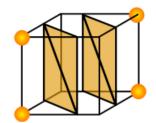


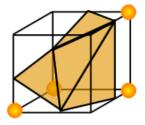






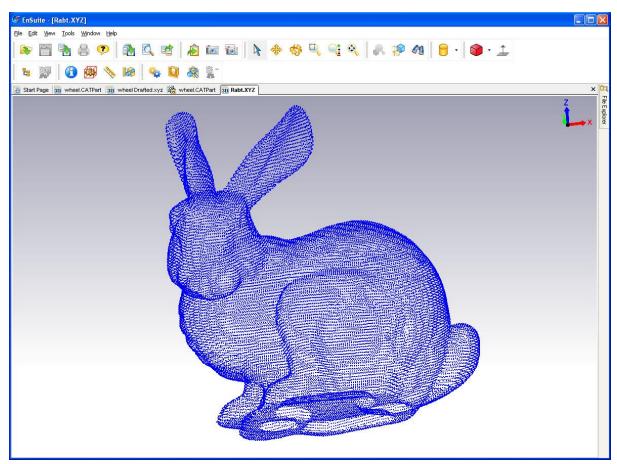






http://en.wikipedia.org/wiki/Marching_cubes

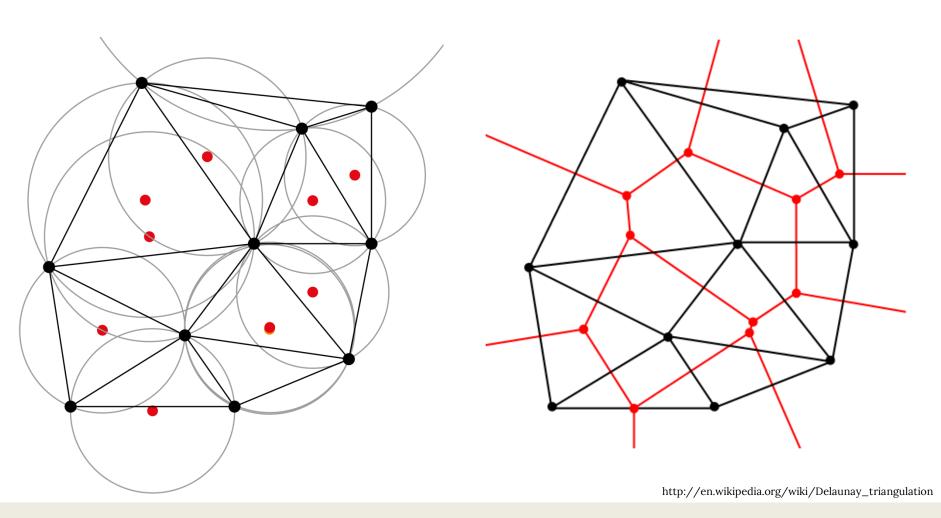
Volumetric extraction



http://www.engineeringspecifier.com/public/primages/pr1200.jpg

Point clouds

DELAUNAY TRIANGULATION

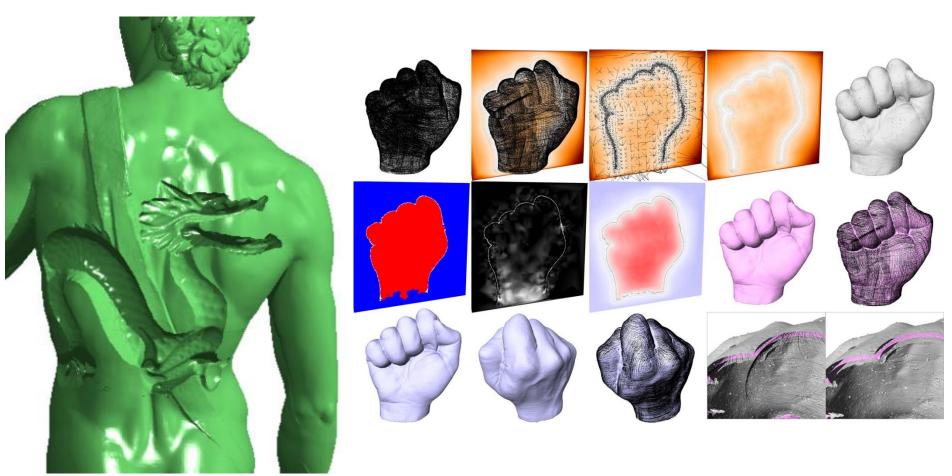


Well-behaved dual mesh

STRATEGIES FOR SURFACE DELAUNAY

- Tangent plane
 Derive local triangulation from tangent projection
- Restricted Delaunay Usual Delaunay strategy but in smaller part of R^3
- Inside/outside labeling Find inside/outside labels for tetrahedra
- Empty balls
 Require existence of sphere around triangle with no other point

NOT THE ONLY MODEL



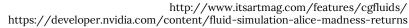
http://www.cs.umd.edu/class/spring2005/cmsc828v/papers/mpu_implicits.pdf ftp://ftp-sop.inria.fr/geometrica/alliez/signing.pdf

Implicit surfaces

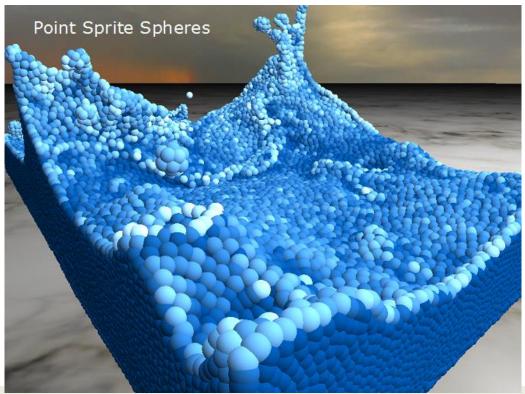
POISSON RECONSTRUCTION

Poisson Surface Reconstruction Kazhdan, Bolitho and Hoppe (SGP 2006)

NOT THE ONLY MODEL







Smoothed-particle hydrodynamics

NEURAL NETWORK AS SURFACE REPRESENTATION?

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Jeong Joon Park^{1,3†} Peter Florence ^{2,3†} Julian Straub³ Richard Newcombe³ Steven Lovegrove³

¹University of Washington ²Massachusetts Institute of Technology ³Facebook Reality Labs

Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.